SCYF=R

the science of prediction

Draft Architecture “DxClassification” API

Medical Imaging Classification

Version: 0.1

Status: Draft
Date: 16-02-2015



SCYF=R

the science of prediction

Draft Architecture “DxClassification” API

Scyfer developed a Deep Learning toolset to train and classify medical images. Using
FI-WARE and FI-STAR components this toolset will be turned into a closed API called
DxClassification. This API can be used by designated medical institutes to analyse and
classify medical images. Currently the Deep Learning toolset is capable of analysing 3D MRI
scans and classifying neurodegenerative diseases. In the future the toolset will expand to
support different types of images and disease classifications (e.g. lung and breast cancer or
strokes). These expansions will become part of the DxClassification API.

Scyfer Deep Learning toolset

The toolset consists of a TrainingAlgorithm and a ClassificationModule. The algorithm is
used during develoment and testing for creating the module. Only the module will be used
for the API. [Explain in 2 sentences how the module works and processes millions of
variables]. To deliver swift results, the module has to run on a heavy processing machine or
separately on HPC instances. [Provide arguments why no data processing modules from
FI-WARE are used]

The DxClassification API

The following modules make up the first version of the API:

e APIserver — Scyfer: A server providing RESTful API end-points through which
hospital information systems, diagnostic systems or medical devices can request
disease classifications by submitting (a collection of) images and meta data. This
module will be written in either Java, Python or Node.js using open-source modules.

e IdentityManagement — FI-WARE KeyRock & PEP Proxy: User Interface to manage
customer access to the API. Internally used by the APlserver and
ClassificationHandler to determine if a request to the API is allowed and can be
processed.

e C(ClassificationHandler — Scyfer: Internal logic to handle classification requests and
results. Receives, normalises and stores images in the PACS, sends images and
meta data to ClassificationModule, returns results to APIserver, registers requests,
reports about customer API usage for billing. This module will be written in either
Java, Python or Node.js and uses the database structure provided by KeyRock.

e PACS - FI-STAR PACS: Image archive for saving and retrieving medical images
used for classification requests. This archive is also a requirement for compliance.




SCYF=R

the science of prediction

The following diagram shows the interdependency between the FI-WARE, FI-STAR and
Scyfer modules:

DxClassification AP

F-WARE. FL-5TAR & Soyfar modwas Scyfer module

|dentityddanagameant
KayRock & PEF Prasy

AP — Classifization
e ClassificaticnHandler Modide

PACS

FARCS

Cloud & Private Infrastructure

The API architecture will be developed as a standalone software package which can be
deployed at any cloud provider or local machine on a customer’s premises. The APl itself is
relatively light weight — using a low-end machine or VM from any cloud provider the API
should be able to handle hundreds of requests per second. The ClassificationModule
processes images and classifies diseases based on millions of data-points. This requires
parallel processing (GPU or CPU) and therefore a higher-end machine or VM. Due to their
modularity, the API and ClassificationModule can run on s single machine or separate at two
different machines either in the cloud or locally.

Usage of FI-WARE

Data/Media Context Management: The API is relatively simple — it processes generic
disease classification requests based on (a collection of) images and meta data.
These requests are not based on context or specific events. The
ClassificationModule takes care of the image processing and analyses millions of
data points in these images to classify a possible disease. No database or external
data source is needed to perform these classifications, the data is built into the
ClassificationModule itself.

Connection to the Internet of Things: Not relevant for this application.
Application/Data Delivery: The first version of the API does not support custom
reporting or mashups. It is expected when more customers and classifications are
added to the system some form of custom reporting will become relevant and
SpagoBl or Wirecloud would be a good solution to offer these functionalities.
Advanced Web-based User Interface: To start lean no interfaces will be build into the
API. It is expected when more customers and classifications are added to the system
the requirements arise for 3D interfaces to display classifications inside scans.
XML3D is an excellent tool to visualise diseases as it supports rendering of 3D
models and features to interact with these models from a browser.

Advanced middleware: Not relevant for this application.

Robotics: Not relevant for this application.




SCYF=R

the science of prediction

Security: As described above, the KeyRock and PEP Proxy will be used for Identity
Management. Data handled by the system is anonymous and stored on local
machines or cloud providers. The security solutions on these infrastructures are
considered to be sufficient for the first version of the API.

Cloud infrastructure: The core activities of Scyfer are focussed on developing and
deploying Deep Learning solutions. Therefore all software will be run at existing cloud
providers or at the customer’s premises. It is expected when more customers and
classifications are added to the system elasticity of the infrastructure becomes more
important. As existing cloud providers like AWS, Rackspace or Microsoft have
excellent orchestration tools these will be used to manage a scalable cloud
infrastructure.

The only module categorized as “Cloud infrastructure” that will be used for the
development of the APl is the FI-STAR PACS Specific Enabler. This module is a key
element in running a medical image solution. The time for development,
commercialisation and certification of the DxClassification API can be shortened
tremendously using this module.




